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Abstract
Purpose of Review This review provides an overview of the latest developments in immobilisation of per- and poly-fluoroalkyl  
substances (PFAS) for soil remediation. It examines the efficacy of a range of amendments, including those with binding 
agents, along with a discussion of immobilisation mechanisms and post-immobilisation assessment needs.
Recent Findings Researchers have recently applied a variety of soil amendments to soil for PFAS immobilisation. Efficacy of 
these has varied widely, both between amendment and soil types and for individual PFAS molecules present in contaminated 
soils. Activated carbon based amendments, including composite amendments exhibit the highest efficacies of the examined 
studies. 
Summary Immobilisation of PFAS is complex, with efficacy of immobilisation varying with soil properties including pH, 
clay and organic matter content, amendment properties, and molecular properties of the individual PFAS. Optimal reme-
diation strategies need to be adjusted accordingly to site specific soil properties and contamination profiles. Additionally, 
bioavailability testing needs to supplement standard leaching approaches to determine effectiveness of PFAS soil immobi-
lisation strategies.

Keywords PFAS · Soil remediation · Immobilisation · Soil amendments · Leachability

Introduction

Per- and poly-fluoroalkyl substances (PFAS) are a group 
of man-made chemicals found in fire-fighting foams, water 
repellent coatings, and consumer products such as carpets, 
textiles and food packaging [1, 2]. In recent years, PFAS 
have emerged as contaminants of concern due to their poten-
tial for persistence, mobility and bioaccumulation in humans 
and the environment. PFAS contamination is complex, with 
PFAS consisting of thousands of different compounds (over 
3,000 of these commercially available) [3] although only 
a limited number are routinely assessed in environmental 
samples. Of these, perfluorooctan`e sulfonic acid (PFOS), 
perfluorooctanoic acid (PFOA) and perfluorooctane sulfo-
nyl fluoride (PFOSF) are listed in the Stockholm conven-
tion, and perfluorohexane sulfonic acid (PFHxS) is listed as 

potential compounds to be added [4]. Consisting of a fully 
or partially fluorinated carbon chain and a functional group, 
PFAS exhibit surfactant-like properties, are characterised 
by high octanol-water partitioning coefficients (e.g. log 
KOW=3.94-6.56 for a range of PFAS [5]) but high aqueous 
solubility and are proteinophilic rather than lipophilic like 
other persistent organic pollutants. Exposure to PFAS has 
been shown to result in a number of adverse health effects 
[6] including hepatotoxicity [7], immunotoxicity [8], neu-
rotoxicity [9], and developmental toxicity [10] although the 
molecular mechanisms influencing these effects are only 
beginning to be elucidated [11]. Environmental concen-
trations in some organisms have also been measured that 
exceed experimentally derived lowest observable adverse 
effect levels (LOAEL) [12, 13].

Over the past 5 years, there has been a substantial increase 
in research on PFAS1, including the fate of PFAS in the envi-
ronment, their bioaccumulation in aquatic and terrestrial food 
webs and approaches for remediation and risk management. 
While a large proportion of research has been undertaken on 
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PFAS impacted water, and associated technologies for its 
removal, less information is available on strategies for the 
treatment of contaminated soil. PFAS contamination of soil 
is prevalent at fluorochemical manufacturing sites [14], fire-
fighting training grounds [15], landfill sites [16], airports and 
air-force bases [17] along with sites where PFAS contaminated 

biosolids [18], wastewater [19] or recycled water [20] have 
been utilised. Given the number of possible per and poly-
fluoroalkyl congeners in commercial products, PFAS con-
tamination from different sources may vary widely in terms 
of concentration and composition. For example, Brusseau et al. 
[21] determined that the median background concentration of 

Fig. 1  Composition of PFAS contamination from three locations; soil 
from an AFFF fire-fighting training ground, a soil with industrially 
impacted biosolids [22], and a soil from a fluorochemical manufactur-
ing plant [14]. On the right hand side of the circle, moving clockwise, 
individual PFAS are shown ordered by decreasing concentration ( � g 

kg−1 ). This is followed by location type, ordered by decreasing total 
PFAS concentration. The size of the link connecting an individual 
PFAS with a location type represents the concentration, sized accord-
ing to the inner numbered scale ( � g kg−1)
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PFOS and PFOA in soil from a large range of international 
sites where neither primary nor secondary PFAS contamina-
tion occurred, was 2.7 � g kg−1 compared to up to 460 g kg−1 
(PFOS) and 11 g kg−1 (PFOA) at contaminated sites. PFAS 
congeners in contaminated soil may vary considerably, as 
depicted in Fig. 1 where three example PFAS contamination 
profiles representing impacts from fluorochemical manu-
facturing, the use of aqueous film-forming foam (AFFF) at 
fire-fighting training grounds and biosolid amended soil are 
shown. PFAS profiles may range from being dominated by a 
single compound (e.g., perfluorooctane sulfonic acid, PFOS) in 
impacted soil from a manufacturing plant [14] to having a wide 
range of congeners present. A soil from a fire-fighting train-
ing area contained significant proportions of both PFOS and 
6:2 fluorotelomer sulfonic acid (6:2 FTS), along with smaller 
amounts of perfluorohexanoic acid (PFHxA) and PFHxS 
among others. Due to wastewater treatment plants (WWTPs) 
having PFAS inputs from multiple sources, biosolids and bio-
solid-amended soil [22] may contain a range of PFAS often 
dominated by long-chain PFAS ( ≥C

7
 ) due to their preferential 

retention (in biosolids) during wastewater processing [23].
Irrespective of the activity leading to soil contamination, 

potential adverse environmental health effects associated 
with PFAS exposure has necessitated the development and 
application of remediation technologies. However, due to the 
unique physicochemical properties of PFAS, some traditional 
remediation strategies are ineffective for PFAS remediation. 
In particular, the strength of the C-F bond limits the applica-
tion of chemical oxidation and bioremediation strategies and 
in some cases, oxidation of poly-fluoroalkyl and/or precursor 
compounds may increase the concentration of recalcitrant 
perfluorinated carboxylic acids (PFCAs) [24]. Soil wash-
ing results in secondary liquid waste that requires additional 
treatment, while phytoremediation is slow, treatment zones 
are dependent on plant root depth, and uptake may be limited 
by mass transfer effects. While thermal treatment technolo-
gies, such as incineration with excess oxygen, gasification 
and pyrolysis have the potential to destroy PFAS by breaking 
C-F bonds, temperatures in excess of 1000 ◦ C are required to 
minimise the production of greenhouse gases [25, 26].

Immobilisation techniques, whilst not removing PFAS 
from the soil matrix, offer a risk management strategy 
through a reduction in leachability and/or bioavailability. 
The effectiveness of immobilisation strategies is influenced 
by a wide variety of parameters, including soil and amend-
ment properties in addition to PFAS profiles in contaminated 
soil. While recent PFAS remediation reviews have provided 
a synopsis of the application of established technologies for 
PFAS contaminated soil and sediment [27–31] or focused 
on emerging treatment strategies [32], this paper provides 
a comprehensive overview of soil-based PFAS immobilisa-
tion approaches including amendment properties, treatment 

efficacy, immobilisation mechanisms, existing data gaps and 
future research priorities.

Immobilisation

Immobilisation is a strategy which reduces the mobility 
and bioavailability of contaminants through the addition 
of ‘sorptive’ soil amendments, thereby reducing expo-
sure for human and ecological receptors. Amendments 
may be applied either in situ or ex situ and used with or 
without additional binding agents (e.g. Portland cement). 
Soil amendments offer the advantage of ease of applica-
tion, cost-effectiveness and commercial viability, however, 
selecting suitable amendments that exhibit high sorptive 
capacity is critical for delivering sustainable immobilisa-
tion approaches. While immobilisation strategies are well 
developed for many legacy contaminants (e.g. metal(loid)
s, PAHs), amendments and immobilisation approaches 
for PFAS have only recently gained research, develop-
ment and commercial attention. Table 1 provides details 
of amendments that have been applied for PFAS immobi-
lisation including activated carbon, biochar, clay, polymer 
and composite sorptive phases. A comparison of physico-
chemical properties which influence PFAS sorptive capacity 
and immobilisation efficacy, which in many cases, may be 
manipulated during amendment development; along with 
advantages and disadvantages of each amendment type are 
discussed in detail in the following sections.

Activated Carbon‑Based Amendments

Activated carbon is a commonly used sorbent for the removal 
of contaminants from (waste)water due to its high surface 
area, high pore volume and surface functional groups. This 
sorbent has also been applied to contaminated soil for the 
immobilisation of a variety of organic and inorganic com-
pounds including PFAS [43, 45, 46]. Activated carbon’s 
effectiveness for PFAS sorption is due its high surface 
area, size and number of pores. However, physicochemical 
properties and sorptive potential of activated carbon varies 
depending on the carbon source and temperature used for its 
production [47]. These parameters influence porosity, sur-
face area and surface functional groups whereby increased 
production temperature decreases surface functional groups, 
and in doing so, increases surface charge [47]. Activated car-
bon has the ability to form both electrostatic and hydropho-
bic interactions with PFAS, and possibly hemi-micelle and 
micelle formation in pores [48]. Charge-assisted hydrogen 
bonding was also suggested from experimental spectroscopy 
of PFAS interacting with functional groups on the surface of 
activated carbon [49].
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A number of activated carbon products are available for 
PFAS sorption including powdered activated carbon (PAC), 
granular activated carbon (GAC) and colloidal/liquid acti-
vated carbon, such as PlumeStop®. Smaller particle size 
activated carbon has the advantage of higher surface area 
but is problematic to apply due to dust issues, however, col-
loidal/liquid activated carbon formulations have overcome 
these issues. Activated carbon amendments have been found 
to have the highest sorption capacity across a range of PFAS 
compared to other immobilisation amendments. In a PFAS 
sorption study using 44 adsorbents in water, Sörengård 
et  al. [50] identified that activated carbon amendments 
(GAC, PAC, RemBind®) had the highest sorption capac-
ity across most PFAS, with mean log Kd values of 3.5 for 
PFCAs and 4.2 for PFSAs, PFOSA and fluorotelomer sul-
fonates (FTSAs). Similarly, GAC was found to be superior at 
removal of PFAS compared to zeolite and sludge in another 
comparative study [51].

Biochar‑Based Amendments

Biochar is used as an amendment due to its high cation 
exchange capacity (CEC), surface area and pore volume 
[52]. It is a carbonaceous material alternative to activated 
carbon, being produced from sustainably sourced materials 
[53] for carbon sequestration. As with activated carbon, bio-
char physico-chemical properties are influenced by carbon 
source material and pyrolysis temperature. Higher pyrolysis 
temperatures result in more organised carbon layers, with less 
functional groups, especially those containing O-H groups (a 
result of deoxygenation and dehydration) [52]. Higher tem-
peratures also result in higher porosity, specific surface area, 
pH and ash content with a concomitant decrease in CEC and 
volatile matter [52]. Animal and solid-waste biochars tend 
to have lower surface area and volatile matter, but higher 
CEC than wood and crop-based biochars. The impact of 
these properties on PFAS sorption are complex, but generally 
result in biochars being less effective in sorption compared to 
their more homogenous activated carbon counterparts.

In an attempt to increase sorption capacity, research has 
been undertaken whereby surface functional groups are 
modified through biochar treatment. For example, biochar 
treated with MgCl

2
 was found to have the highest mean log 

Kd for PFCAs (0.93) and PFSAs (0.87) of the non-activated 
carbon sorbents, while the untreated, MnO and FeCl

3
 treated 

biochars were less effective at sorbing PFAS [50].

Clay‑based Amendments

Of the non-carbon-based amendments, clays, such as zeo-
lite, bentonite, hydrotalcite, montmorillonite and kaolinite 
have been utilised as a sorbent phase for PFAS immobilisa-
tion due to their large surface area and recognised potential AC
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to sorb organic contaminants (e.g. PAHs). Clay minerals 
are hydrophilic, chemically stable and have high cation 
exchange capacities [54]. The abovementioned clays differ 
in their constituent molecules, structures and interlayer spac-
ing which drives sorptive capacity. For example, Zhang et al. 
[55] determined that kaolinite had a higher PFOS sorption 
capacity (77.6 � g g −1 ) than montmorillonite (54.5 � g g −1 ), 
however, PFOS was observed to sorb in the montmorillonite 
interlayer. A study of PFAS sorption on kaolinite in water 
[56] found that adsorption of ≤C

4
 molecules was not ther-

modynamically favourable. Clay minerals may also be modi-
fied to increase their PFAS sorptive capacity [54]; some of 
these modified clays are discussed in the following section 
on composite amendments.

Composite and Other Amendments

To improve the efficacy of soil amendments for PFAS 
immobilisation, composite products have been developed 
that comprise a variety of sorptive phases in combination. 
The philosophy behind composite amendments is to utilise 
different components exhibiting different physicochemical 
properties to enable multiple sorptive mechanisms for PFAS 
retention. Composite amendments used for PFAS immobili-
sation include RemBind®, RemBind Plus® and MatCARE.

RemBind® is a composite amendment, consisting of 
aluminium hydroxide, kaolin, and activated carbon. It is 
proposed that the aluminium hydroxide component of 
RemBind® interacts via electrostatic forces with anionic 
PFAS, binding the functional group. The activated carbon 
and organic matter components of RemBind® bind to the 
PFAS ‘tail’ through hydrophobic and Van der Waals forces. 
This provides a twopronged reaction mechanism for binding 
PFAS anions. In addition, the kaolinite and organic matter 
component of RemBind® provides the ability to bind cati-
onic compounds through electrostatic interactions, regard-
less of the length of the CF backbone. The activated carbon 
component also binds PFAS cations through hydrophobic 
interactions. Most long-chain PFAS ( ≥C

8
 ) bind to activated 

carbon, however, smaller compounds ( ≤C
4
 ) may not bind 

efficiently as there are limited contact points with the carbon 
surface and Van der Waals forces are weak. In RemBind®, 
short-chain compounds are bound through electrostatic 
interactions as detailed above. RemBind Plus® [38] con-
tains a higher quality and amount of both activated carbon 
and aluminium oxyhydroxides.

MatCARETM, is another composite amendment that con-
sists of clay (palygorskite-based, an Mg-Al phyllosillicate), 
which has been modified with an unsaturated fatty amine 
(oleylamine), and also contains quartz, kaolinite, dolo-
mite, amorphous materials and traces of NaCl [39]. It was 

reported to have a PFOS adsorption capacity of 0.09 mmol 
g −1 , which was higher than the activated carbon product, 
Hydraffin (0.07 mmol g −1 ) from the same study [39]; how-
ever, the sorptive performance for other PFAS and envi-
ronmental implication related to the use of the oleylamine 
modification has not been reported.

Other amendments investigated for their PFAS sorptive 
capacities include polymers, carbon nanotubes and nanopar-
ticles with ligands. In an aquifer solids sorption study, the 
cationic polymers polydiallyldimethyl ammonium chloride 
(polyDADMAC) and polyamine [57] were found to increase 
sorption of PFSAs and PFCAs by a factor ranging from 2.0 
to 6.1. For example, KD values for PFOS increased from 
1.44 L kg−1 for the untreated soil, to 2.94L kg−1 and 8.75 
L kg−1 for polyDADMAC and polyamine respectively. It 
was proposed that the increase in PFAS sorption was due 
to the increase in carbon content, but also due to enhanced 
exchange interactions between the cationic polymers and 
anionic PFAS [57]. Similarly, a study of two polyquaternium 
polymers, poly-(dimethylamine-co-epichlorohydrin) and 
poly-(diallyldimethylamonium) in water/soil suspensions, 
found that PFOS was bound, predominantly in soil-polymer-
PFOS complexes, with respective affinities of 9.3 × 10

4 and 
7.3 × 10

4 M −1 [58].
PFOS sorption onto Gold nanoparticles with different 

combinations of dual ligands has been demonstrated by Liu 
et al. [59], while the adsorption of PFOA onto multi-walled 
carbon nanotubes (MWCNT) and MWCNT with embed-
ded Fe, Co, Al, Mg, Mn, Fe

2
O

3
 , Cu and Zn has been dem-

onstrated in several studies [60–62]. Carbon nanotubes are 
useful sorbents due to their large surface areas; however, the 
cost of MWCNT is generally prohibitive relative to GAC and 
PAC for large scale applications.

Amendment Additions and Binding Agents

The amount of amendment added to a contaminated soil will 
influence treatment costs, and may also influence whether 
the soil is able to be reused post-treatment. Application rates 
for immobilisation studies included in Table 1 range from 
0.1% to 30%. Soil amendments may also be added to con-
taminated soil in conjunction with binding agents such as 
cement and lime. Binders are added to reduce the hydraulic 
conductivity and to increase or maintain unconfined com-
pressive strength so that it is compatible with the intended 
site end use. The co-addition of amendments and binders 
provides a two-pronged approach for minimising PFAS 
leaching through adsorptive and encapsulation processes, 
as described in "Mechanisms of Immobilisation". Binding 
agents listed in Table 1 have typically been added at 10% 
w/w, and cured for a number of months.
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Remediation Effectiveness

A common strategy for determining immobilisation efficacy 
is the assessment of contaminant leaching, with a comparison 
between pre- and post-amendment values. Leaching assays are 
routinely undertaken to characterise the soil’s mobile phase 
with data then utilised to estimate ground or surface water 
contamination potential. Leaching assays may also be utilised 
to classify waste for disposal and/or to demonstrate the effec-
tiveness of soil amendment strategies. This may be achieved 
through the use of numerous leaching tests, including the 

Australian Standard Leaching Procedure (ASLP; AS4439-
1997), Synthetic Precipitation Leaching Procedure (SPLP; 
USEPA method 1312), Toxicity Characteristic Leaching 
Procedure (TCLP; USEPA method 1311), TCLP variations 
(e.g. ASTM D3987-85), Multiple Extraction Procedure 
(MEP; USEPA method 1320) and Leaching Environmental 
Assessment Framework methods (LEAF; USEPA methods 
1313-1316). The aforementioned leaching procedures vary in 
operational parameters including leaching fluid pH, buffering 
capacity, ionic strength, single versus multiple extractions, 
solid-to-solution ratio, contact time, agitation, maximum 

Fig. 2  Comparison of PFCA 
immobilisation efficacy when 
different amendment strategies 
were applied to contaminated 
soil. Data points may be cross-
referenced with information in 
Table 1 to glean information 
on application rates, curing 
times and methods used for the 
assessment of PFAS leach-
ability. PAC, Rembind® and 
RemBind Plus® [38], compost, 
montmorillonite [43], pine 
biochar [36],  MatCARETM 
[39], PlumeStop® [34], GAC 
and CB [33], all other amend-
ments with binder [42]. Points 
lower than -25 are shown at 
-25. Some results may be aver-
ages over several soil types, 
conditions and/or replicates, or 
the most realistic application 
rate. (A) Includes the activated 
carbon based amendments; (B) 
includes only studies involving 
a concrete binder
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particle size, batch versus column tests; all of which will influ-
ence PFAS leachability outcomes. For example, differences 
in fluid pH (e.g. buffered TCLP at pH 4.93 versus unbuffered 
ASLP using deionised water) will influence leachability due 
to the impact of pH on sorption-desorption (as detailed in 
"Mechanisms of Immobilisation") while particle size differ-
ences (the maximum particle size for AS4439 is 2.4 mm ver-
sus 9.5 mm for TCLP) will also influence leaching outcomes 
due to disparities in reactive surface areas.

Notwithstanding the methodological differences between 
leaching assays, data from PFAS immobilisation studies 
(Table 1) are represented in Figs. 2 and 3 to provide an 

overview of immobilisation efficacy for different amendment 
strategies applied in both laboratory and field-based stud-
ies for PFAS varying in carbon chain length and functional 
group. Treatment efficacy was calculated, as in Sörengård 
et al. [34] by:

where ct
aq

 is the PFAS concentration in the leachate of the 
treated soil and cu

aq
 of the untreated soil leachate.

(1)ΔRe =

(

1 −

ct
aq

cu
aq

)

× 100

Fig. 3  Comparison of PFSA, 
FTS and FOSA immobilisation 
efficacy when different amend-
ment strategies were applied to 
contaminated soil. (A) Includes 
the activated carbon based and 
composite amendments; (B) 
includes compost, montmoril-
lonite and studies involving 
a concrete binder. Data point 
sources as described in Fig. 2 
and Table 1
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Values greater than zero indicate that the amendment 
strategy decreased PFAS leachability compared to una-
mended soil with increasing values up to a maximum of 
100 indicating increasing treatment efficacy up to com-
plete immobilisation. Negative values may also be calcu-
lated whereby the addition of the soil amendment results in 

enhanced PFAS leachability compared to unamended soil. 
Negative values may also result from analytical variability 
particularly when PFAS concentrations are being reported 
near the level of quantification. Conceivably precursor trans-
formation may influence PFAS immobilisation efficacy; 
however, data illustrating this is lacking due to analytical 

Fig. 4  Change in PFOA (A) and 
PFOS (B) leachability following 
treatment of soil with amend-
ments (as detailed in Table 1). 
PFOA and PFOS leachability 
pre- ( ▪ ) and post-amendment 
( ) is presented in the context 
of regulatory standards for 
unlined (U), lined (L) and 
double-lined (DL) landfills [63]. 
Amendments shown: RemBind 
[38], biochar [35], amendments 
with binder [42]
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challenges associated with precursor identification and quan-
tification. The plot of treatment efficacy, depicted in Figs. 2 
and 3, provides a high-level approach for comparing data 
across amendment strategies. However, efficacy calculations 
do not reflect whether the extent of immobilisation was suit-
able against regulatory standards (i.e. landfill leaching crite-
ria, water quality standards). As a result, Fig. 4a, b highlight 
PFOA and PFOS pre- and post-amendment leaching results 
in the context of regulatory standards.

As shown in Fig. 2, treatment efficacy trends were observed 
for PFCAs when different amendment strategies were utilised; 
PFAS immobilisation efficacy increased with increasing car-
bon chain length although some variability was observed for 
C 
10

-C
14

 compounds in the study of Sörengård et al. [34]. For 
≤C

6
 PFCAs, immobilisation efficacy for most treatments was 

<50% with the exception of three amendments incorporating 
activated carbon. Activated carbon amendments were highly 
effective at reducing leachability of ≥C

8
 PFCAs in amended 

soil as exemplified by RemBind® and RemBind Plus® 
amendments [38]. At loadings of 25% and 15% w/w respec-
tively, >97% reduction in leachability was observed for C 

8

-C
10

 PFCAs. For PlumeStop®, a decrease in immobilisation 
efficacy was observed for >C

7
 PFCA possibly due to reduced 

hydrophobic interactions [34]. While only a limited number 
of studies have assessed the impact of biochar addition on 
PFCA leachability, Askeland et al. [36] observed increasing 
immobilisation efficacy with increasing carbon chain length. 
However, compared to activated carbon amendments, biochar 
appears to be less effective at reducing PFCA leachability, 
though further comparative studies with equivalent amend-
ment loadings and leaching assessment methodologies would 
be beneficial. While the addition of bentonite, CaCl

2
 , chi-

tosan, hydrotalcite and zeolite in conjunction with a concrete 
binder had little effect on treatment efficacy compared to the 
binder alone, the addition of activated carbon-based amend-
ments with concrete binders enhanced immobilisation effi-
cacy compared to binder alone, particularly for C 

5
-C

9
 PFCAs. 

When immobilisation efficacy was compared between Rem-
Bind® amendments with and without the addition of con-
crete binders, C 

5
-C

7
 PFCA treatment efficacy was enhanced 

by inclusion of the binding agent, however, this effect was not 
observed for longer chain PFCAs.

Immobilisation trends were less apparent for PFSAs com-
pared to PFCAs (Fig. 3). For activated carbon-based amend-
ments, higher immobilisation efficacy was observed for short-
chain compounds (perfluorobutane sulfonic acid (PFBS) and 
PFHxS) compared to the equivalent carbon chain length car-
boxylic acids. Although some variability in PFSA immobilisa-
tion efficacy was observed for PlumeStop® [34], the remain-
der of the activated carbon-based amendments reduced PFSA 
leachability, irrespective of carbon chain length and degree of 
fluorination, by >80%. Limited data points are available for 
biochar amendments, however, similar trends were observed 

for PFSAs and PFCAs. Similarly, the addition of bentonite, 
CaCl

2
 , chitosan, hydrotalcite and zeolite in conjunction with 

a concrete binder had little effect on PFSA treatment efficacy 
compared to the binder alone [42].

Figure 4 shows PFOA and PFOS leachability pre- and 
post-amendment addition from selected studies, with refer-
ence to landfill regulatory guidelines [63]. In soil contain-
ing high PFOA leachability pre-treatment ( ∼ 90 � g L −1 ), 
irrespective of amendment type, leachability post-treatment 
was reduced to an acceptable level for soil disposal into a 
double-lined landfill, although for most treatments there was 
no advantage of adding an amendment (0.2% w/w) over the 
binder alone (10% w/w, Figure 4a). However, carbon-based 
amendments (PAC + binder, RemBind® + binder [42]) per-
formed significantly better, reducing PFOA leachability to 
achieve the single-lined landfill criterion. For soil with low 
PFOA leachability pre-treatment (<3 � g L −1 ), addition of 
RemBind® (25% w/w), RemBind Plus® (15% w/w) [38] and 
biochar (5% w/w) [35] reduced PFOA leachability to below 
the unlined landfill criterion. Although landfill acceptance 
criteria are lower for PFOS compared to PFOA, all treatments 
were able to reduce PFOS leachability to at least the double-
lined landfill criterion (Fig. 4b). However, carbon-based 
amendments (RemBind®  RemBind Plus®  Biochar, PAC + 
binder, RemBind® + binder) achieved the single-lined land-
fill criterion at application rates ranging from 5-25% w/w.

Mechanisms of Immobilisation

A reduction in PFAS leachability occurs as a result of a 
number of sorption mechanisms. Sorption mechanisms are 
dependent on physico-chemical properties of PFAS and 
amendments and are influenced by the surrounding soil and 
environmental conditions. The following conditions will 
impact PFAS sorption: 

1. C chain length and function group influence hydropho-
bic and electrostatic interactions respectively

2. Amendments may influence sorption through changes in 
soil pH (electrostatic interactions), by providing surfaces 
for hydrophobic interactions, and cation bridging.

3. PFAS adsorption studies performed on soils with vary-
ing characteristics (e.g. OC, clay, pH, anion exchange 
capacity (AEC) and protein) [64–70] have found that 
soil pH, organic carbon and clay content all play impor-
tant roles in sorption through a combination of electro-
static and hydrophobic interactions [71].

4. Most PFAS have pKa<2 and thus are anions under most 
environmental circumstances. However, some PFAS 
(e.g. PFOSA, pKa 6.2-6.5), do not form anions under 
many circumstances [42, 72], which will impact sorption 
strategies based on direct electrostatic interactions.
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PFAS have widely varying physico-chemical properties, and 
in particular, both the functional group and fluorinated C chain 
length affect sorption behaviour. PFAS may exist as uncharged, 
anionic, cationic, or zwitterionic molecules, although the most 
commonly observed compounds (PFOS and PFOA), both form 
anions. Charge differences affect sorption and desorption pro-
cesses, and impacts the efficacy of soil amendments. The sul-
fonate functional group of PFSAs is considered to be a hard 
base, having higher sorption onto oxide surfaces than the soft 
base of the carboxylate group in PFCAs [73]. However, differ-
ent amendments vary in their PFAS immobilisation efficacy 
due to the complex interplay of properties. Surface charge is 
a significant parameter, for example with anionic PFAS, sorp-
tion increases with increasingly positive surface charge [74].

Activated carbon and biochar have a number of different 
functional groups on the amendment surface, depending on 
the temperature of production, which will influence electro-
static interactions. More functional groups are present on 
the surface when production occurs at a lower temperature, 
therefore electrostatic interactions are likely to be higher; 
however, hydrophobic interactions may be the predomi-
nant PFAS sorption mechanism, as carbonaceous material 
produced at higher temperature have higher PFAS sorption 
capacities. pH influences will impact electrostatic interac-
tions as an increase in pH will result in competition for sorp-
tion sites, between OH- groups and anionic PFAS [73].

PFAS octanol-water partitioning coefficients are influ-
enced by C-chain length (e.g. PFHxA KOW=3.12 versus 
PFOA KOW=4.59 [75]), while log KOC has been shown to 
increase by 0.6 and 0.83 with each additional fluorinated 
carbon for PFCAs and PFSAs respectively [67]. As such 

sorption efficacy of varying carbon chain length compounds 
to soil and soil amendments is influenced by KOW through 
hydrophobic interactions [42, 66]. It has been reported that 
PFAS hemi-micelles and bilayers may form through self-
aggregation on amendment surfaces [76] which is influenced 
by sorbent pore size, organic matter fraction, surface area 
and degree of carbonisation [36, 42].

In addition to electrostatic and hydrophobic interactions, 
PFAS may also form divalent cation bridges, with ions 
such as Ca2+ [77] and Mg2+ . Smaller PFAS are more likely 
to participate in divalent cation bridging, as observed by 
Campos Pereira et al. [67], potentially due to their shorter 
C-F tail, which makes them less hydrophobic, and subse-
quently less likely to sorb via hydrophobic interactions. 
Carbon nanotubes (CNT) with a variety of metal cations 
(Co, Mn, Mg and Al) on their outer and inner surface were 
found to enhance PFOA sorption by a factor of 6 compared 
to CNT containing inner surface Fe as a consequence of 
enhanced electrostatic interactions [60]. In addition, ligand 
exchange may occur between the carboxyl group of PFCAs 
and hydroxyl groups on metal oxides [76], forming inner 
sphere complexes via covalent metal-ligand bonds.

Compared to anionic PFAS, fewer sorption studies have 
been undertaken on cation, zwitterionic and neutral PFAS 
[42]. A study on cationic and zwitterionic PFAS sorption 
in soils [78], found that sorption of these compounds was 
non-linear, in contrast to anionic PFAS, however, electro-
static and hydrophobic interactions were the predominant 
mechanisms controlling PFAS sorption. Cationic PFAS 
sorption was correlated with soil organic matter content 
and was reversible. In contrast, sorption of zwitterionic 

Fig. 5  Assessment framework for the design, optimisation and validation of PFAS immobilisation efficacy and longevity
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PFAS was hysteretic rather than reversible and was 
hypothesised to be due to entrapment in porous structures 
present in inorganic soil components [78]. Differences in 
behaviour between cationic and zwitterionic PFAS high-
light the necessity of further studies to assess the influ-
ence of soil amendments on PFAS fate and transport and 
immobilisation efficacy.

When binding agents are utilised, encapsulation also con-
tributes to the decrease in PFAS leachability. Although the 
addition of cement binders may raise the pH to around 10 
[42], thereby decreasing the impact of electrostatic interac-
tions, the decrease in surface area and reduction in hydrau-
lic conductivity of stabilised/solidified material results in 
reduced PFAS leachability.

Conclusions and Future Research Needs

As detailed in "Remediation Effectiveness", a common 
approach for assessing the efficacy of PFAS immobilisa-
tion is the use of leaching methodologies (e.g. SPLP, TCLP, 
ASLP). These approaches are simplistic, however, differ-
ences in operational parameters may restrict true compari-
son of immobilisation efficacy between treatments and 
studies. In addition, these approaches for the assessment of 
PFAS immobilisation utilise operationally defined proce-
dures which may generate methodological artefacts, such 
as perceived enhanced contaminant mobility via colloidal 
generation [79–81]. Water-dispersible naturally occurring 
colloids are generated as a result of vigorous shaking during 
the batch extraction process or by leaching under elevated 
pH. Colloids exhibit high specific surface area and charge, 
which are effective sorbents for PFAS. Although an under-
standing of colloidal facilitated mobility of PFAS is limited, 
this transport mechanism has been shown to be significant 
for other contaminants of concern including metal(loid)s, 
mono-aromatic hydrocarbons, polycyclic aromatic hydro-
carbons, polychlorinated biphenyls and organochlorine 
pesticides [82–87]. The use of the Leaching Environmental 
Assessment Framework (LEAF) [88] may overcome some 
the aforementioned limitations as the framework incorpo-
rates a number of standardized testing methods (including 
assays to assess pH dependency, liquid:solid dependency, 
percolation and mass transfer) and generic or application-
specific release models. In addition, the LEAF overcomes 
single-point leaching tests that assess a specific environmen-
tal scenario and can accommodate defined particle sizes and 
monoliths (i.e. minimized colloidal generation) which are 
relevant for solidified materials.

Post immobilisation assessment should provide further 
consideration to the influence of aging and environmental 
factors on long-term immobilisation efficacy. Limited stud-
ies have assessed immobilisation stability over extended 

timeframes, however, PFAS immobilisation longevity 
was demonstrated in RemBind® amended soil following 
a 3-year aging period [38]. Although small increases in 
PFAS leachability (ASLP) were observed in aged samples 
when 2 month and 3-year leachability data was compared, 
PFAS leachability after 3-years was reduced by >99% 
compared to unamended soil. Additional studies like this 
are needed to elucidate the long-term effect of soil amend-
ments on PFAS immobilisation. However, a limiting fac-
tor for ageing studies is the timeframe required to assess 
longevity. Conceivably, wetting and drying (at elevated 
temperature) cycles could be introduced into protocols as 
a means to accelerate ageing processes. This may provide 
indicative information regarding the impact of ageing on 
immobilisation stability although interpretation of data 
may be confounded by the difficulty in replicating natural 
ageing processes in the laboratory [89].

Transformation of PFAS and/or precursor compounds may 
potentially occur post-treatment via biotic and abiotic oxida-
tion processes. Although little research has been undertaken 
to investigate the rate and extent of post-immobilisation trans-
formation, the total oxidisable potential (TOP) assay [90] may 
provide an approach for quantifying transformation. However, 
as the name suggests, the assay quantifies the impact of oxida-
tion on PFCA formation, although it fails to elucidate time-
frames for such processes. Nevertheless, this information may 
provide a worst-case scenario for PFAS immobilisation stabil-
ity. In the aforementioned 3-year RemBind ageing study [38], 
it was proposed that the minor increase in PFAS leachability in 
aged immobilised soil may have resulted from the generation 
of labile PFCAs through precursor compound transformation, 
however, it is conceivable that minor increases in PFAS leach-
ability may have also resulted from immobilising agent break-
down. For some soil amendments with organic modifications 
(e.g. amine-modified clays), constituents may be utilised by the 
indigenous microflora as a carbon and energy source, thereby 
potentially impacting amendment integrity and PFAS sorption. 
The stability of these and other soil amendments has not been 
assessed in the context of PFAS sorption and retention; further 
assessment of this is required to ensure long-term stability of 
PFAS immobilised soil.

While leaching tests are utilised to understand the leaching 
profile of immobilised soil and/or determine the regulatory 
acceptability of stabilised material for disposal, data generated 
from these methods do not provide information regarding the 
influence of soil amendments on PFAS biological exposure and 
impact. If PFAS leachability can be reduced to below the cri-
terion for unlined landfills, conceivably immobilised soil could 
remain on site; in such a case, other assessment methodologies 
(i.e. bioavailability assessment) would be required to ensure 
stabilised material was environmentally benign. Conceivably, 
leaching approaches may provide a conservative estimate of 
labile/exchangeable PFAS available to plants, however, other 
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release mechanisms may be pertinent for ecological receptors 
facilitated by oxidative processes (of precursor compounds or 
immobilising agent) and/or pH changes (e.g. in gut environ-
ments). However, limited studies have been undertaken whereby 
changes in PFAS bioavailability (e.g. decrease in PFAS bioaccu-
mulation) as a result of amendment application have been quan-
tified. Bräunig et al. [38] reported that PFAS bioaccumulation 
in E. fetida decreased by 74-98% following immobilisation of a 
soil with 25% w/w RemBind®, although earthworm weight loss 
was reported, presumably due to decreased nutrient availability. 
These potential ecological impacts require further investigation 
in addition to the assessment of potential sub-chronic health 
effects including oxidative stress, DNA damage and reproduc-
tive issues.

Due to the variability in physicochemical properties of 
legacy and replacement PFAS (e.g. ADONA, GenX), a 
single agent may not be adequate/suitable to immobilise 
all compounds of concern in impacted soil. As such, soil 
amendments may need to be tailored to site-specific condi-
tions. To drive future PFAS soil amendment research and 
development, a robust assessment framework is essential 
to elucidate not only immobilisation efficacy but longev-
ity of immobilisation processes. The schematic framework 
detailed in Fig. 5 provides key assessment components 
required to test and validate the efficacy, longevity and bio-
logical impact of amendments for PFAS immobilisation 
in soil. This information is critical to provide a lines-of-
evidence approach for the application of sustainable, cost-
effective, immobilisation strategies to minimise the impact 
of PFAS on environmental health.
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